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Abstract

Background—HIV acquisition in the female genital tract remains incompletely understood. 

Quantitative data on biological HIV risk factors, the influence of reproductive hormones, and 

infection risk are lacking. We evaluated vaginal epithelial thickness during the menstrual cycle in 

pigtail macaques (Macaca nemestrina). This model previously revealed increased susceptibility to 

vaginal infection during and following progesterone-dominated periods in the menstrual cycle.

Methods—Nucleated and non-nucleated (superficial) epithelial layers were quantitated 

throughout the menstrual cycle of 16 macaques. We examined the relationship with previously 

estimated vaginal SHIVSF162P3 acquisition time points in the cycle of 43 different animals 

repeatedly exposed to low virus doses.

Results—In the luteal phase (days 17 to cycle end), the mean vaginal epithelium thinned to 66% 

of mean follicular thickness (days 1-16; p=0.007, Mann-Whitney test). Analyzing four-day 

segments, the epithelium was thickest on days 9-12, and thinned to 31% thereof on days 29-32, 

with reductions of nucleated and non-nucleated layers to 36 and 15% of their previous thickness, 

respectively. The proportion of animals with estimated SHIV acquisition in each cycle segment 

correlated with non-nucleated layer thinning (Pearson’s r = 0.7, p<0.05, linear regression 

analysis), but not nucleated layer thinning (Pearson’s r = 0.6, p=0.15).

Conclusions—These data provide a detailed picture of dynamic cycle-related changes in the 

vaginal epithelium of pigtail macaques. Substantial thinning occurred in the superficial, non-

nucleated layer, which maintains the vaginal microbiome. The findings support vaginal tissue 

architecture as susceptibility factor for infection and contribute to our understanding of innate 

resistance to SHIV infection.
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Introduction

HIV acquisition and establishment of systemic infection in the female genital tract remain 

incompletely understood1. New insights could lead to new approaches for biomedical HIV 

prevention strategies. The vaginal epithelium has been implicated as site of first HIV 

transmission to infiltrating or underlying target cells. In macaques, Hu et al demonstrated 

that SIV rapidly traverses the vaginal epithelium after intra-vaginal exposure 2, and Carias et 

al reported efficient penetration of this barrier, suggesting a simple “diffusive percolation 

mechanism” 3. Thinning of vaginal epithelial tissues under hormonal influences is 

documented in rhesus4,5 and pigtail6-9 macaques. It occurs to a substantially lesser degree in 

humans during naturally progesterone-dominated periods of the menstrual cycle 10,11 , and 

also during progestin-based hormonal contraception in some studies10-12, but not 

others 13,14. However, extent and time course of thinning have not been established with 

great detail.

Epithelial thinning has been interpreted as a likely contributor to increased SHIV risk during 

the menstrual cycle of macaques5,6. Other biological factors have been discussed as putative 

HIV risk factors (reviewed in15,16), and they may influence SHIV risk as well (e.g., changes 

in the vaginal microbiome, mucosal inflammation, target cell infiltration of the epithelium, 

and others). Quantitative data are lacking to link SHIV or HIV acquisition to these 

biological factors. The factors may also be regulated during the increased HIV acquisition 

risk reported during hormonal contraception use in some observational studies17,18 in 

women. Careful studies of each of these putative biological SHIV or HIV risk factors are 

expected to contribute to a comprehensive scientific evaluation of the relationship of 

hormonal contraception and SHIV/ HIV risk.

We here measure the thickness of vaginal epithelium during the menstrual cycle of pigtail 

macaques. This tissue has many similarities with skin 19, including its barrier function, as 

demonstrated with regards to HIV 20. It is stratified squamous epithelium consisting of four 

variably distinguishable cell layers, i.e., the superficial stratum corneum (facing the vaginal 

canal), and underlying stratum granulosum, spinosum, and basale 3,19. HIV target cells, i.e., 

Langerhans and CD4 T cells can be found in the epithelium, but mainly reside in the 

underlying lamina propria. We quantitate the epithelial layer thicknesses in uninfected 

animals, and correlate the data to SHIV acquisition previously measured in a different group 

of animals. Our research group has used pigtail macaques for testing of anti-HIV prevention 

modalities targeted to women, using the repeat-low dose (RLD) virus exposure approach 

(e.g., 21). It models human sexual HIV exposure, as not every exposure leads to infection 22. 

Using our animal model, we previously noticed that vaginal SHIVSF162P3 acquisition did 

not occur randomly throughout the menstrual cycles in these animals, but rather happened 

preferentially during two weeks prior to and throughout menstruation 23,24. This was during 

the progesterone peak of the cycle, and in the following week when progesterone receded. 
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This raised the question of whether hormone-induced epithelial thinning would correlate 

with estimated time of infection in this model, as would be expected if it indeed is a 

susceptibility factor for infection.

Methods

Ethics statement

The Institutional Animal Care and Use Committee (IACUC) of the Centers for Disease 

Control and Prevention (CDC) approved all macaque procedures. This study was carried out 

in strict accordance with the recommendations in the Guide for the Care and Use of 

Laboratory Animals 25. All procedures were performed under anesthesia using ketamine, 

often in combination with Telazol.

Animals, biopsy collection, menstrual cycle determination

Sixteen female pigtail macaques (Macaca nemestrina) were born elsewhere, purchased, and 

housed at CDC. Ages ranged from 4.5 to 14.2 years. Sexual and reproductive histories were 

unknown, except for macaque PHQ1 (IDs listed in Table 1) who had six live births. Vaginal 

biopsy was performed by taking 4.2 mmy × 4.2 mm punches with a rigid punch biopsy 

instrument (EuroMed, Tuttlingen, Germany) from three separate sites each time a biopsy 

was taken as previously described 8. Sites were recorded in radial degrees and distance to 

vaginal os, and repeat biopsy of the same location was avoided. Biopsies were scheduled 

with two or three week intervals. Menstrual cycle day of biopsies was retrospectively 

determined using a combination of plasma progesterone (previously described 23) measured 

once per week, and menstrual blood and sex skin (perineal tumescence) observation on each 

weekday 26, and recorded on a scale of 0/1 and 1-4, respectively. All 16 animals had 

menstrual cycles (data not shown). An example of menstrual cycle determination is shown 

in Fig 1. for animal BB0499. Day one of the cycle was defined by the first day of menstrual 

bleeding. Bleeding was not observed for two animals. In those, day 1 was defined when 

progesterone reached background levels after a steep drop 23. Follicular phase was defined 

as cycle days 1-16, while the luteal phase was days 17 until cycle end. Animal ages were 

evenly distributed across menstrual cycle time points at time of biopsy (data not shown). 

Estimated SHIVSF162P3 acquisition time points throughout the menstrual cycle from 43 

other animals are summarized elsewhere 24. Age at infection was available for 19 of the 43 

animals, and ranged from 2.7 to 18.5 years. All 43 infected animals had menstrual 

cycles 23,24.

Epithelial thickness measurements

Biopsy tissues were fixed in 10% neutral buffered formalin for 72 hours, processed for 

routine paraffin histology, sectioned at four microns, mounted on slides, and stained with 

hematoxylin-eosin (H&E). Whole slide images were captured with the ScanScope system 

(Aperio, Vista, CA), and epithelial thickness was measured using the HALO image analysis 

software’s epithelial thickness algorithm (Indica Labs, Corrales, NM), with manual 

delineation of the non-nucleated and nucleated cell layers by a certified veterinary 

pathologist. The pathologist was aware of animal ID and calendar date of sample collection, 

but did not know corresponding time point within menstrual cycle. Both layer thicknesses 
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were measured at 50 µm intervals along the entire length of appropriately oriented tissue 

biopsies, and total thickness was calculated by addition of these two measurements. 

Measurements from up to three tissue pieces per biopsy time point were recorded, and 

amounted to 11 – 445 measurements per biopsy (Table 1), with a mean of 142.

Statistics

Statistical computations (mean tissue depths, standard deviations, linear regressions, Mann-

Whitney tests) were performed using GraphPad Prism software version 5.03 (San Diego, 

CA). To visualize patterns in the data, smoothed curves were fit to the data using a spline 

function (df=5)27. Loess smoothing provided similar results (data not shown). To obtain 

adequate smoothing of the curve in the lower and upper tails and by taking into account the 

cyclical characteristics of the menstrual cycle data, the last data point was replicated at time 

prior to the lower boundary of data and the observation from the first day of the cycle was 

replicated after the upper boundary.

Results

Dynamic changes in the vaginal epithelium throughout the menstrual cycle

Vaginal epithelial architecture was evaluated at two time points within the cycle of sixteen 

pigtail macaques. Fig. 2A shows cyclical variations in epithelial thickness and degree of 

keratinization from two animals. Biopsies from BB173 show the epithelium on days 8 and 

22 of the cycle. BB405 is shown with thinned epithelium without keratinization on cycle day 

3, and thicker epithelium with a prominent keratinized superficial layer (s. corneum) on 

cycle day 17. To quantitate changes, we measured thickness of the superficial non-nucleated 

layer separately from the underlying nucleated layers. Further discrimination of the 

nucleated epithelial layers (s. granulosum, spinosum, basale)3,19,28 was not attempted due to 

the lack of clear delineation between the layers. Fig. 2B shows examples of the output from 

image analysis software used for thickness measurements, after manual demarcation of the 

border between non-nucleated and nucleated epithelial layers. Tissues from animal BB770 is 

shown on cycle day 15 (left, top and bottom) and from animal BB0540 on cycle day 25 

(right panel, bottom).

Table 1 summarizes epithelial thickness measurements from individual macaques. The 

thinnest epithelium was measured in animal PHQ1 on cycle day 1, at 82 micrometers. 

BB981 and BB770 had the thickest epithelium at 535 and 532 μm on menstrual cycle days 8 

and 15, respectively. Of note, three animals completely lacked the superficial non-nucleated 

epithelial layer on days 1, 3, or 29 (PHQ1, BB405, BB108). We compared the thickness of 

the entire epithelium between follicular and luteal phases, as others have previously done in 

pigtail and rhesus macaques 5,6. The mean thickness was 346 um in the follicular, and 230 

um in the luteal phase, a reduction to 66%. This difference was statistically significant 

(p=0.007, Mann-Whitney test).

Mean thickness is shown in 4-day intervals throughout the cycle to visualize dynamic 

changes in greater detail in Fig. 3A. The epithelium was thickest on days 9-12 with a mean 

overall thickness of 434 μm, and thinnest at 134 μm on days 29-32, right before 

Kersh et al. Page 4

Sex Transm Dis. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



menstruation, a relative thinning to 31% from peak to nadir. At these times, large relative 

thickness changes occurred in the superficial, non-nucleated layer from peak mean of 106 

μm to a minimum mean 16 μm, a relative reduction to 15%. For the nucleated layers, the 

corresponding mean thicknesses were 327 and 118 μm, respectively, a reduction to 36%. 

Fig. 3B depicts dynamic changes in the epithelium and its component layers during the cycle 

using a smoothing algorithm.

The relationship between epithelial thickness and estimated SHIV acquisition

We previously reported estimated SHIV acquisition time points within the menstrual cycle 

of 43 different macaques 24. The macaques were repeatedly exposed to weekly or twice-

weekly low dose virus throughout their cycles, with random exposure start times in relation 

to the cycle, resulting in infection after a median five exposures 24. Biopsy collection is 

invasive and likely increases susceptibility to infection by compromising the vaginal 

epithelium and creating virus entry points. We therefore used the previously collected 

data 24 and independently examined the relationship with vaginal epithelial thickness during 

corresponding time segments within the cycle of the sixteen uninfected macaques. Fig. 4A 

shows previously reported estimated SHIV acquisition time points, re-graphed in 4-day 

intervals for analysis purposes. As previously reported, most infections were estimated to 

occur on days 1-8 and 25-32 of the cycle 24. Estimated infections negatively correlated with 

thickness of the non-nucleated layer (Pearson’s r = −0.7, p<0.05, linear regression analysis), 

but less, and not statistically significant, with thickness of the nucleated layer (Pearson’s r=

−0.6, p=0.15, Fig. 4B, C). The correlation of infection and overall epithelial thickness, i.e., 

sum of both layers was not statistically significant (Person’s r = −0.7, p=0.06, graphed 

results not shown). The negative correlation findings were further supported by the patterns 

in the smoothed data curves (Fig. 4D). This graph demonstrates an inverse relationship, with 

epithelial thickness lowest at times of highest transmission events and thickest at times of 

lowest transmission events, i.e., at the beginning and end of the menstrual cycle.

The relationship between age, epithelial thickness, and susceptibility to infection

All biopsied animals were of reproductive age, ranging from 4.5 to 14.2 years (Table 1). We 

examined whether epithelial thickness varied with age using a stratified multivariable 

regression model that controlled for the changing depth of epithelium during the complete 

menstrual cycle. The model stratum with data points from time periods when the epithelium 

was thickest, i.e. not thinned as a likely result of hormonal influences, was of particular 

interest. We thus selected the half of the menstrual cycle when the mean epithelium was 

thickest, i.e., days 5 – 20 (Fig. 3A). At these times, thickness of the non-nucleated layer 

correlated with increasing age (p=0.002, Fig. 5A), but thickness of the nucleated layer did 

not (p=0.46 Fig. 5B), and neither did overall thickness (p=0.08, multivariable regression, 

graphed data not shown). We also examined age and thickness at times of the cycle when 

the tissues are thinned due to hormonal influences, i.e., days 1-5 and days 21 - 32. There was 

no association between age and thinning for nucleated or non-nucleated layers (data not 

shown). Finally, we inquired whether younger animals were more susceptible to vaginal 

infection in the RLD animal model, since their non-nucleated layer of the vaginal epithelium 

was thinner in mid-cycle compared to older animals. We were able to determine birth dates 

and age at infection for nineteen of the 43 previously examined, infected animals 24. In 
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those, younger age was not associated with increased susceptibility to infection (Fig. 5C), as 

there was no significant correlation between age and the number of exposures it took to 

infect animals (Pearson’s r = 0.1, p>0.05, linear regression analysis, Fig. 5C), though this 

model did not control for potential confounding by time in menstrual cycle.

Discussion

The study objective was to describe extent and dynamics of vaginal epithelial changes 

during the menstrual cycle of pigtail macaques with greater detail in time than was 

previously studied. We found that the epithelium is thinned to 66% of its former thickness in 

the luteal compared to the follicular phase, similar to previous findings in macaques5,6. 

However, it is with more narrow time intervals that we see the continuously changing 

thickness of vaginal tissue in these animals. When comparing the thickest and thinnest four-

day intervals of the cycle, a maximum thinning to 31% was observed. Remarkably, during 

this same timeframe, the non-nucleated layer underwent thinning to 15% of its maximum 

depth. The extent of epithelial changes are not fully realized when the menstrual cycle is 

analyzed as follicular or luteal cycle phases. Another study objective was to assess the 

relationship between times of vaginal infection and epithelial thinning. In using two distinct 

sets of study animals, we correlated time of thinnest non-nucleated epithelial layer with 

times of highest infection probability. Our study provides new, and more quantitative 

support for a barrier function of the vaginal epithelium and its long-suspected role 4 for SIV 

and SHIV infection risk in female macaques.

Thinning of the superficial epithelial vaginal layer (s. corneum) correlated significantly with 

SHIV infections during the cycle. The s. corneum may be particularly critical for host 

defense 16,28. This layer has only loose intercellular junctions, and can therefore easily be 

penetrated by invading pathogens 2,3. Its’ cells are terminally differentiated, have largely 

lost nuclei and protein production machinery, and can therefore not mount immune 

responses de novo. Nonetheless, the layer is thought to play an important role in anti-HIV 

defense because it is glycogen-rich, a feature essential for nourishing the vaginal 

microbiome which maintains the vaginal pH. The role of the microbiome in host defense is 

only partially elucidated, but it is clear that variations in the microbiome leading to bacterial 

vaginosis increase HIV risk 29,30. Of note, however, there are substantial differences 

between human and pigtail macaque genital microbial populations 31. The s. corneum also 

exfoliates invading pathogens by continuously shedding itself and any attached pathogens. It 

is thus possible that thinning promotes SHIV uptake not only by reducing physical barriers 

and distance to target cells, but also through the associated changes in bacterial microflora or 

other innate resistance mechanisms.

There are important differences between the human and pigtail vaginal epithelium. Human 

vaginal epithelium is non-keratinizing and is less subject to thinning during the cycle and in 

response to hormonal contraception than in macaques. Mauck et al found a small but 

statistically significant change in the mean epithelial height of the vaginal wall between 

follicular and luteal phase in twenty women with mean age of 35.4 years10. Calculated by us 

to match our analysis, the epithelium thinned during luteal phase to 83% or 73% of its 

follicular phase thickness (from 212 to 174.6 microns, and from 283.6 to 205.9 microns, 
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respectively), for two independent pathologists’ readings. There was no further reduction in 

thickness during DMPA (depot-medroxyprogesterone acetate, brand name Depo-Provera®) 

use. A reduction during the cycle was also reported by Chandra et al 11, calculated by us as a 

reduction to 86%, although thinning was not statistically significant. DMPA use resulted in 

thinning in some studies 12, but not others 13,14. It is thus clear that hormone-induced 

fluctuations in vaginal epithelial thickness are more limited in humans compared to pigtail 

macaques. However, the dynamics and extent of human thinning may not have been 

examined in similar detail as recorded here, and may be underestimated.

Study limitations include the small number of animals, inability to biopsy more than twice 

per animal per menstrual cycle, and the potential inaccuracy of infection times due to an 

unknown eclipse period as previously discussed 23,24. The relationship between epithelial 

thickness and susceptibility to infection is based upon ecological inference, as aggregate 

data from distinct animals rather than a single population of animals were studied. This was 

not possible because biopsy collection is expected to promote SHIV acquisition. We thus 

cannot conclude that vaginal epithelial thickness is a “correlate of protection” from SHIV 

infection. However, our findings do not refute this possibility. Also, we did not collect 

information on infiltrating lymphocytes, i.e., target cells for HIV.

All of our animals were purchased after they reached sexual maturity, which occurs at age 

2.5 to 3 years in this species. We are thus not able to examine thinning or susceptibility to 

infection in very young females. We also could not examine the relationship of thinning 

with other reproductive factors that may be associated with increasing age, e.g., increased 

sexual experience, or parity, as this information was not included in health records at animal 

purchase. It is important to point out that the relationship of increasing thickness with age is 

expected only for reproductive age animals, and not animals past their reproductive stage. In 

women, the vaginal epithelium thins after menopause, likely due to low estrogen. 

Menopause can occur in macaques 32, but is not expected before age 25 years, well past the 

age range of our pigtail macaque cohort.

In conclusion, we documented the extent and kinetics of vaginal epithelial thinning in 

macaques by quantitating distinct vaginal epithelial layer thicknesses throughout the 

menstrual cycle. Our analysis suggests greater thinning during menstruation than previously 

observed. We describe the relationship of vaginal thinning and susceptibility to infection 

during the menstrual cycle. These data contribute to our understanding of innate resistance 

mechanisms to SHIV infection.
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Summary

A study in an animal model for vaginal HIV infection reveals a quantitative, correlative 

relationship between infection risk during the menstrual cycle and thinning of the 

superficial vaginal epithelial layer.
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Fig. 1. 
Menstrual cycle starting time determination in example macaque BB0499. Menstrual cycle 

start and duration were determined retrospectively using daily observation of bleeding (open 

circles), sex skin swelling (recorded on a scale of 1-4, left axis, grey bars), and plasma 

progesterone (right axis, filled circles). In this example, onset of menstrual bleeding defined 

day one of the cycle. Biopsies (cross symbol) were collected on days 8 and 29 of the cycle 

for this animal.
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Fig. 2 A. 
Example H&E stained vaginal biopsies from two pigtail macaques at two different time 

points each (10x magnification). Text inserts refer to macaque identification numbers and 

menstrual cycle day. B: Top: Illustration of non-nucleated and nucleated vaginal epithelial 

layers. Intermediate layers refer to s. granulosum and spinosum. Bottom: Analysis 

parameters applied using software as described in the text, measuring epithelial thickness at 

50 micron intervals across all mounted parts of the biopsies. A mean 142 measurements 

were analyzed for each biopsy occasion.
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Fig. 3. 
Dynamic changes in the vaginal epithelium during the menstrual cycle. A: Mean epithelial 

thickness and SD (standard deviation, error bars) of the layers in animals with measurements 

in the indicated 4-day cycle segments. B: The dynamic changes are graphed using smoothed 

curves for epithelial thickness layers as indicated.
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Fig. 4. 
Relationship of epithelial thickness and susceptibility to SHIV infection A. The graph shows 

the percentage of 43 female pigtail macaques with est. (=estimated) SHIV acquisition time 

point at the indicated menstrual cycle segments of four days. The macaques became 

SHIVSF162P3 infected after repeated vaginal exposure at low virus dose, as published 24. 

Data were analyzed and plotted for 4-day intervals. B, C: Scatter plots of the thickness of 

mean vaginal epithelial layers during 4-day menstrual cycle segments, and the estimated 

SHIV acquisition in corresponding 4-day segments in 43 different macaques. The line 

represent linear regression analysis; R = Pearson co-efficient; p-value results from 

hypothesis test of non-zero slope. The right Y axis refers to the number of infections as 

reported in 24. D. Smoothed data were graphed to further examine the relationship of non-

nucleated layer thickness and susceptibility to infection throughout the menstrual cycle.
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Fig. 5. 
Age, vaginal epithelial thickness, and susceptibility to infection. A, B. Scatterplots show the 

distribution of mean vaginal layer thickness and age of 16 macaques, ranging from 4.5 to 

14.2 years. Thickness was evaluated between days 5-20, i.e., when thickness was high, and 

not thinned by hormonal influences. The line represents the linear relationship; p-value tests 

the hypothesis of non-zero slope in a multivariable model that controlled for changing levels 

of thickness over the course of the menstrual cycle C. Scatterplot shows the age of 19 

macaques when they became vaginally infected with repeated, low doses of SHIVSF162P3 

as described in 24.
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Table 1

Summary of vaginal epithelial measurements

Animal
ID

Menstrual
cycle day

Age at
biopsy
(years)

Epithelium
(um)
mean

SD Nucleated
layer
(um)
mean

SD Non-
nucleated
layer
(um)
mean

SD Number of
measurements

PHQ1 1 14.08 82 48 82 48 0 0 157

BB405 3 6.42 276 128 276 128 0 0 83

BB050 3 4.42 361 89 240 71 121 43 43

BB108 8 6.58 319 84 224 84 95 31 92

BB480 8 6.42 270 91 185 65 85 38 445

BB552 8 4.58 389 98 338 88 51 34 135

BB967 8 8.58 418 111 270 72 148 55 235

BB049 8 6 260 141 190 68 70 87 141

BB173 8 9.58 325 143 214 181 111 71 149

BB981 8 12.58 535 104 358 103 176 39 149

PPi2 8 7.58 273 72 254 78 19 30 213

BB480 9 6.33 475 199 361 163 113 53 157

BB537 9 6.67 392 158 292 124 100 63 178

BB537 15 6.75 248 67 198 65 50 18 93

BB770 15 9.17 532 109 407 140 125 50 124

PHQ1 15 14.17 388 101 243 65 145 70 104

BB405 17 6.5 445 111 272 79 173 64 103

BB552 18 4.5 259 94 169 96 90 28 182

BB981 22 12.58 394 160 304 110 89 75 140

BB173 22 9.67 250 97 182 74 69 39 58

BB480 23 6.42 265 92 162 64 104 48 177

BB050 25 4.5 156 58 130 55 26 27 138

BB269 25 6.33 216 81 169 81 47 10 11

BB480 25 6.33 200 69 155 63 44 17 145

BB770 25 9.25 284 52 178 44 107 25 125

BB521 27 6.17 211 58 139 47 72 40 175

BB108 29 6.5 84 48 84 48 0 0 224

BB049 29 6.08 114 75 99 58 15 33 52

BB967 29 8.67 224 88 189 81 35 31 185

PPi2 29 7.5 112 113 99 94 13 21 82

Summary of vaginal epithelial measurements throughout the menstrual cycle of sixteen pigtail macaques, ordered by day of menstrual cycle. The 
table provides mean values from all measurements at each biopsy occasion, with standard deviations (SD). Thirty biopsy results are shown; two 
additional biopsies were not usable. Each line summarizes results from one animal (ID=identification number), at one time point. “Epithelium” 
refers to the sum of mean nucleated and non-nucleated layers, measured in micrometers (um), from 11 – 445 measurements (last column), 
depending on the size of the harvested tissues.
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